2 6 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds Bing - Long Chen and Xi - Ping Zhu
نویسندگان
چکیده
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on complete noncompact manifolds is still an open question. Recently it was found that the uniqueness of the Ricci flow on complete noncompact manifolds is important in the theory of the Ricci flow with surgery. In this paper, we give an affirmative answer for the uniqueness question. More precisely, we prove that the solution of the Ricci flow with bounded curvature on a complete noncompact manifold is unique.
منابع مشابه
ar X iv : m at h / 05 05 44 7 v 3 [ m at h . D G ] 2 7 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds Bing
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...
متن کامل2 1 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...
متن کاملN ov 2 00 2 Positively Curved Complete Noncompact Kähler Manifolds
In this paper we give a partial affirmative answer to a conjecture of Greene-Wu and Yau. We prove that a complete noncompact Kähler surface with positive and bounded sectional curvature and with finite analytic Chern number c 1 (M) 2 is biholomorphic to C 2. The celebrated theorem of Cheeger–Gromoll–Meyer [3], [10] states that a complete noncompact Riemannian manifold with positive sectional cu...
متن کاملRicci Flow with Surgery on Four-manifolds with Positive Isotropic Curvature
In this paper we study the Ricci flow on compact four-manifolds with positive isotropic curvature and with no essential incompressible space form. Our purpose is two-fold. One is to give a complete proof of the main theorem of Hamilton in [17]; the other is to extend some results of Perelman [26], [27] to four-manifolds. During the the proof we have actually provided, up to slight modifications...
متن کاملA Property of Kähler-Ricci Solitons on Complete Complex Surfaces
where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...
متن کامل